
Table of contents
Executive summary 2

Methodology and scope 3

Vulnerability overview 5
API2:2023 Weak or missing access controls (Critical) 6
API4:2023 Unrestricted resource consumption (High) 8
API1:2023 Unauthorised access to other users’ data (High) 11
API3:2023 Overly broad data returns (High) 13
API3:2023 Unauthorised data modiޯcations (Medium) 15

List of changes 17

Disclaimer 17

Imprint 17

crAPI
Customer:
crAPI
2025-07-08
v2

Contact:
Søren Johanson

+49 156 79 589 764
soeren@soeren.codes

mailto:soeren@soeren.codes

Executive summary
This sample report is built around crAPI, an intentionally vulnerable demo API
from OWASP that shows the kind of ޯndings you would see in an API security
audit.

The layout is founder-friendly:

Executive highlights open every section - plain-English risk, impact and
urgency, so you can decide what truly matters before diving into detail.
Technical ޯxes follow straight after for your engineers, with clear, step-by-
step actions.

The recommendations are written so you can hand the report to your own
team or any security partner to close the gaps. You are not tied to my services -
that way you stay in full control of cost and timelines.

This is a sample of some of the vulnerabilities found in crAPI and not
exhaustive; it's intended to highlight my methodology, depth and how ޯndings
map to OWASP Top 10, ISO 27001 and SOC 2. A full report would cover all
endpoints and include additional checks.

•

•

crAPI
Søren Johanson

Heiligengeiststraße 6-8
26121 Oldenburg (Oldb)

Germany

2 / 17

https://github.com/OWASP/crAPI
https://github.com/OWASP/crAPI
https://owasp.org/

Methodology and scope

Methodology
This audit followed a structured and repeatable process to assess the security
posture of publicly exposed API endpoints, combining manual techniques with
selective automation. The goal is to simulate what a motivated attacker or
security-savvy customer might uncover, without intrusive or disruptive testing.

1. Scope of assessment
The following API components were reviewed:

Endpoints under /identity , /community/ and /workshop/ namespaces
Public documentation or exposed interface elements linked to these APIs

Testing was conducted as a white box engagement: Since the repository is
open source, I reviewed the source code and utilised automated testing to ޯnd
the vulnerabilities. The report includes code-level ޯxes for certain
vulnerabilities where appropriate.

Excluded from scope:

Infrastructure, CI/CD pipelines, cloud security posture
Mobile apps, SDKs, or third-party dependencies unless directly tied to the
API surface

2. Techniques used
This audit involved:

Manual inspection of endpoints, response structures, and parameter
behaviour along with source code
OWASP API Security Top 10 as reference for vulnerability classes
Targeted fuzzing, enumeration, and error observation techniques
Basic token/ID manipulation to test for BOLA/BFLA weaknesses
Heuristic analysis for CORS, rate-limiting, error leakage, and
misconޯguration

•
•

•
•

•

•
•
•
•

crAPI
Søren Johanson

Heiligengeiststraße 6-8
26121 Oldenburg (Oldb)

Germany

3 / 17

Where relevant, ޯndings are mapped to:

ISO/IEC 27001:2022 controls (Annex A)
SOC 2 Trust Services Criteria
OWASP API Security Top 10 (2023)

3. Limitations
As mentioned in the Executive Summary, this sample report is intended to
showcase how I work and thus does not include every vulnerability present in
crAPI.

As mentioned in 1. Scope of assessment, infrastructure and other third-party
dependencies were excluded from the audit. As this audit is purely focused on
the API, it also does not cover common web app vulnerabilities such as cross
site scripting or cross site request forgery, as those are not applicable to APIs.

•
•
•

crAPI
Søren Johanson

Heiligengeiststraße 6-8
26121 Oldenburg (Oldb)

Germany

4 / 17

https://www.iso.org/standard/27001
https://www.aicpa.org/resources/download/trust-services-criteria
https://owasp.org/API-Security/editions/2023/en/0x00-header/

Vulnerability overview
In the course of this audit 1 Critical, 3 High and 1 Medium vulnerabilities were
identiޯed:

Figure 1 - Distribution of identiޯed vulnerabilities

Vulnerability Criticality

API2:2023 Weak or missing access controls Critical

API4:2023 Unrestricted resource consumption High

API1:2023 Unauthorised access to other users’ data High

API3:2023 Overly broad data returns High

API3:2023 Unauthorised data modiޯcations Medium

crAPI
Søren Johanson

Heiligengeiststraße 6-8
26121 Oldenburg (Oldb)

Germany

5 / 17

1. API2:2023 Weak or missing access controls
Remediation Status:
Criticality: Critical
CVSS-Score: 9.8
Aޮects: /identity/api/v2/user/reset-password

Executive highlights
The API has a critical logic ްaw which allows any user to change another user's
password, without verifying if the user has access to that email address. This
allows an attacker to perform a full account takeover with ease.

Technical description
Broken authentication arises when the API fails to verify credentials or session
tokens correctly.

In this instance, when a user asks to reset their password, there is no
secondary veriޯcation. A common secondary veriޯcation step would be to send
a conޯrmation email to prove that they have access to the given email address.
The email always includes a link with a short-lived token to prevent tampering.

Currently, it's possible to stage a full account takeover just by knowing the
email address of the user, as the new password is supplied directly in the same
API call:

curl --request POST \
 --url http://localhost:8888/identity/api/v2/user/reset-password \
 --header 'Authorization: Bearer token' \
 --header 'Content-Type: application/json' \
 --data '{
 "email": "admin@example.com",
 "password": "Admin1234!"
}'

Recommendations
Implement a secondary veriޯcation step
To verify that the user has access to the given email address, make sure to
send a conޯrmation email to that address. There should be a link to a
separate "Reset password" page in the conޯrmation email, with a short-

•

crAPI
Søren Johanson

Heiligengeiststraße 6-8
26121 Oldenburg (Oldb)

Germany

6 / 17

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

lived token to verify ownership. Usually, these tokens and thus the
conޯrmation links are set to expire after 15 minutes. Make sure to clearly
state how long the conޯrmation link is valid in the conޯrmation email.
Do not reveal whether a user account exists
When the user has entered an email address to receive the conޯrmation
email, be intentionally vague in any notiޯcations on whether a user account
exists for the given email address. This is to prevent user enumeration, as
you don't want an attacker to deޯnitively know that a person has registered
for the service. An example notiޯcation would be "If the email address is
associated with an account, we've sent a conޯrmation email to that email
address."

Related Standards
OWASP API Top 10: API2 Broken Authentication
ISO 27001: A.5.15 - Secure authentication
ISO 27001: A.5.17 - User registration and de-registration
ISO 27001: A.8.28 - Secure coding
SOC 2: CC6.2 - Authentication mechanisms
SOC 2: CC6.4 - Session controls

Additional information
https://owasp.org/API-Security/editions/2023/en/0xa2-broken-
authentication/
https://cheatsheetseries.owasp.org/cheatsheets/
Authentication_Cheat_Sheet.html

•

•
•
•
•
•
•

•

•

crAPI
Søren Johanson

Heiligengeiststraße 6-8
26121 Oldenburg (Oldb)

Germany

7 / 17

https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/
https://owasp.org/API-Security/editions/2023/en/0xa2-broken-authentication/
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html

2. API4:2023 Unrestricted resource
consumption
Remediation Status:
Criticality: High
CVSS-Score: 8.6
Aޮects: /workshop/api/merchant/contact_mechanic

Executive highlights
The API includes an endpoint to contact a mechanic, with an attribute that
allows repeating the request n number of times if it failed. By setting n to a
large number and sending a faulty request, it's possible for an attacker to
cause a denial of service attack with ease.

Technical description
Unrestricted resource consumption occurs when the API fails to enforce
constraints on resource usage for incoming requests. Common factors include:

No execution timeouts or low default values, allowing requests to run
indeޯnitely.
Absence of limits on memory or CPU allocation per request.
Lack of restrictions on the number of ޯle descriptors, processes or threads
spawned.
No rate limiting or throttling controls on endpoints, enabling high request
volumes.
Missing or misconޯgured spending caps for third party integrations,
exposing the organisation to inްated bills.

Without these controls in place, crafted requests or automated scripts can
exhaust system resources, leading to denial of service or runaway costs.

Here, the number_of_repeats and repeat_request_if_failed parameters allow
an attacker to craft a denial of service attack:

curl --request POST \
 --url http://localhost:8888/workshop/api/merchant/contact_mechanic \
 --header 'Authorization: Bearer token' \
 --header 'Content-Type: application/json' \
 --data '{

•

•
•

•

•

crAPI
Søren Johanson

Heiligengeiststraße 6-8
26121 Oldenburg (Oldb)

Germany

8 / 17

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:H

 "number_of_repeats": 9999999,
 "mechanic_api": "string",
 "vin": "string",
 "repeat_request_if_failed": true,
 "problem_details": "string",
 "mechanic_code": "string"
}'

Recommendations
Remove retry parameters
The API includes repeat_request_if_failed and number_of_repeats
parameters. Remove these; do not let the client determine a retry strategy.

Speciޯcally, the relevant code can be found in crAPI/services/workshop/crapi/
merchant/views.py :

69 repeat_request_if_failed = request_data.get("repeat_request_if_failed
", False)
70 number_of_repeats = request_data.get("number_of_repeats", 1)
71 if repeat_request_if_failed and number_of_repeats < 1:
72 return Response(
73 {"message": messages.MIN_NO_OF_REPEATS_FAILED},
74 status=status.HTTP_503_SERVICE_UNAVAILABLE,
75)
76 elif repeat_request_if_failed and number_of_repeats > 100:
77 return Response(
78 {"message": messages.NO_OF_REPEATS_EXCEEDED},
79 status=status.HTTP_503_SERVICE_UNAVAILABLE,
80)

As well as crAPI/services/workshop/crapi/merchant/serializers.py :

23 class ContactMechanicSerializer(serializers.Serializer):
24 """
25 Serializer for Contact Mechanic model.
26 """
27
28 mechanic_api = serializers.CharField()
29 repeat_request_if_failed =
serializers.BooleanField(required=False)
30 number_of_repeats = serializers.IntegerField(required=False)

Deޯne and enforce execution timeouts
Set sensible limits for request processing time to prevent runaway
operations.

•

•

crAPI
Søren Johanson

Heiligengeiststraße 6-8
26121 Oldenburg (Oldb)

Germany

9 / 17

Limit resource allocation per request
Use containerisation or serverless platforms to constrain CPU, memory and
ޯle descriptor usage.
Apply rate limiting and throttling
Conޯgure per-client or per-endpoint limits to control request rates over
deޯned time windows.
Conޯgure spending caps and alerts for third party services
Use billing limits or automated notiޯcations to detect and stop excessive
consumption.
Monitor and log resource usage patterns
Collect metrics on request latency, memory and CPU consumption, and alert
on anomalous behaviour.

Related Standards
OWASP API Top 10: API4 Unrestricted Resource Consumption
ISO 27001: A.5.36 - Technical compliance testing
ISO 27001: A.8.29 - Security testing
SOC 2: CC7.2 - Availability protection
SOC 2: CC6.6 - Resilience mechanisms

Additional information
https://owasp.org/API-Security/editions/2023/en/0xa4-unrestricted-
resource-consumption/
https://cheatsheetseries.owasp.org/cheatsheets/
Web_Service_Security_Cheat_Sheet.html#availability

•

•

•

•

•
•
•
•
•

•

•

crAPI
Søren Johanson

Heiligengeiststraße 6-8
26121 Oldenburg (Oldb)

Germany

10 / 17

https://owasp.org/API-Security/editions/2023/en/0xa4-unrestricted-resource-consumption/
https://owasp.org/API-Security/editions/2023/en/0xa4-unrestricted-resource-consumption/
https://cheatsheetseries.owasp.org/cheatsheets/Web_Service_Security_Cheat_Sheet.html#availability
https://cheatsheetseries.owasp.org/cheatsheets/Web_Service_Security_Cheat_Sheet.html#availability

3. API1:2023 Unauthorised access to other
users’ data
Remediation Status:
Criticality: High
CVSS-Score: 8.1
Aޮects:

/identity/api/v2/vehicle/<vehicle_id>/location
/workshop/api/mechanic/mechanic_report

Recommendation: Implement authorisation checks for all endpoints to verify
users can only access resources they own.

Executive highlights
The API does not check that the user is allowed to view or change the particular
resource they request. There are multiple endpoints that allow any user to
request information without checking that they're authorised to do so,
compromising conޯdential user data and other user's privacy.

Technical description
Broken object-level authorisation occurs when an endpoint accepts a client-
supplied identiޯer without verifying the caller’s rights over that exact object.

In this case, the API is missing ownership checks in middleware or controller
logic to verify that the requested resource ID belongs to the authenticated user.
This allows users to request any vehicle location; if this is updated in real time,
this is a severe compromise of user privacy. It's also possible to get any
mechanic report just by supplying a diޮerent report ID. Each mechanic's report
includes conޯdential user data such as their email address, their vehicle's VIN
and more.

To request the real-time location of a speciޯc vehicle, a simple GET request is
suޱcient:

curl --request GET \
 --url http://localhost:8888/identity/api/v2/vehicle/4bae9968-
ec7f-4de3-a3a0-ba1b2ab5e5e5/location \
 --header 'Authorization: Bearer token'

•
•

crAPI
Søren Johanson

Heiligengeiststraße 6-8
26121 Oldenburg (Oldb)

Germany

11 / 17

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:N

Because there is no ACL (access-control list) or permission check at the object
level, simply swapping in another ID in the URL or request body is suޱcient to
breach conޯdentiality and integrity.

Recommendations
Enforce object-level checks on every endpoint
Before returning or modifying a resource, verify that the authenticated user
is authorised for that speciޯc ID.
Centralise access control logic
Implement a shared service or middleware layer that all routes must pass
through to validate permissions.
Validate identiޯers against user entitlements
On receipt of an ID parameter, cross-check it against a list of resources
owned or permitted for the current user.
Harden ID generation and unpredictability
Where possible, use unguessable identiޯers (for example, cryptographically
random UUIDs) rather than simple counters.
Log and monitor access failures
Record every failed object-access attempt and conޯgure alerts for unusual
enumeration patterns.

Related Standards
OWASP API Top 10: API1 Broken Object Level Authorisation
ISO 27001: A.5.16 - Access rights
ISO 27001: A.5.18 - Privileged access
ISO 27001: A.8.26 - Application security requirements
SOC 2: CC6.1 - Logical access control
SOC 2: CC6.3 - Unauthorised access prevention

Additional information
https://cheatsheetseries.owasp.org/cheatsheets/
Authorization_Cheat_Sheet.html
https://owasp.org/API-Security/editions/2023/en/0xa1-broken-object-level-
authorization/

•

•

•

•

•

•
•
•
•
•
•

•

•

crAPI
Søren Johanson

Heiligengeiststraße 6-8
26121 Oldenburg (Oldb)

Germany

12 / 17

https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html
https://owasp.org/API-Security/editions/2023/en/0xa1-broken-object-level-authorization/
https://owasp.org/API-Security/editions/2023/en/0xa1-broken-object-level-authorization/

4. API3:2023 Overly broad data returns
Remediation Status:
Criticality: High
CVSS-Score: 7.5
Aޮects:

/workshop/api/mechanic/
/workshop/api/management/users/all

Executive highlights
The API is exposing internal data without suޱcient checks. As a result, an
unauthorised user can get detailed information about registered mechanics
and all other users, including their email, available credits and internal number.

Technical description
This vulnerability arises when object-level authorisation isn’t enforced on
individual properties. Whether via REST endpoints that return full JSON objects
or GraphQL mutations/queries that let clients specify return ޯelds, the API does
not:

Restrict which properties are serialised or deserialised.
Validate that the authenticated user is permitted to read or write each
speciޯc property.

Attackers can fuzz or enumerate hidden properties - then read ޯelds like
fullName or recentLocation, or inject ޯelds such as total_stay_price or blocked -
and the server processes them without additional checks.

Recommendations
Enforce property-level authorisation
Before serialising or applying any client-supplied property, verify the caller
is allowed to access or modify that exact ޯeld.
Use explicit serialisation schemas
Avoid blanket methods like to_json() or mass-assignment frameworks.
Instead, deޯne DTOs or serialization classes that list only approved ޯelds.

•
•

•
•

•

•

crAPI
Søren Johanson

Heiligengeiststraße 6-8
26121 Oldenburg (Oldb)

Germany

13 / 17

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

Validate incoming payloads
Implement schema-based request validation to reject unexpected or
forbidden properties.
Review & harden access control logic
For every endpoint, codify which roles or users may read or write each
property - ideally with a centralised ACL module.
Test with property-mapping tools
Incorporate fuzzers or automated checks that attempt to inject or request
hidden ޯelds as part of your CI-driven API test suite.

Related Standards
OWASP API Top 10: API3 Broken Object Property Level Authorisation
ISO 27001: A.5.16 - Access rights
ISO 27001: A.8.26 - Application security requirements
SOC 2: CC6.1 - Logical access control
SOC 2: CC6.3 - Unauthorised access prevention

Additional information
https://cwe.mitre.org/data/deޯnitions/213.html
https://cheatsheetseries.owasp.org/cheatsheets/
Mass_Assignment_Cheat_Sheet.html

•

•

•

•
•
•
•
•

•
•

crAPI
Søren Johanson

Heiligengeiststraße 6-8
26121 Oldenburg (Oldb)

Germany

14 / 17

https://cwe.mitre.org/data/definitions/213.html
https://cheatsheetseries.owasp.org/cheatsheets/Mass_Assignment_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Mass_Assignment_Cheat_Sheet.html

5. API3:2023 Unauthorised data modiޯcations
Remediation Status:
Criticality: Medium
CVSS-Score: 6.5
Aޮects: /workshop/api/shop/orders/<order_id>

Executive highlights
Because the API does not restrict which ޯelds a user can change, it is possible
to manipulate internal values that should be read-only or protected. Together,
these issues allow attackers to obtain free goods, create unauthorised credit
and tamper with content without any special privileges or detection.

Technical description
Mass assignment occurs when the API automatically binds all JSON properties
in a request to object ޯelds without ޯltering for authorised or allowed
attributes. In this case, the endpoints accept arbitrary ޯelds and apply them
directly to internal models. There is no allow-list or schema validation to block
protected properties, so an attacker can modify ޯelds they should not control.

In practice:

A customer can mark an item as “returned” even if they never bought it, and
claim it for free.
A user can inްate their account balance by returning a bogus purchase,
crediting themselves with money they never spent.
Anyone can edit hidden video properties (for example internal ްags or
metadata) that should only be set by administrators.

Recommendations
Enforce an allow-list for updatable ޯelds
Only bind and apply properties that are explicitly permitted for each
endpoint. Reject any request containing unknown or protected ޯelds.
Use explicit data transfer objects (DTOs) or schemas
Deޯne precise request and response models (for example with JSON
Schema or strong-typing in your framework) so that only intended
properties can be serialised or deserialised.

•

•

•

•

•

crAPI
Søren Johanson

Heiligengeiststraße 6-8
26121 Oldenburg (Oldb)

Germany

15 / 17

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N/MPR:L

Filter incoming payloads at a central layer
Implement middleware or a service that strips out any ޯelds not on the
allow-list before reaching business logic.
Validate critical business logic on the server
For operations such as returns or refunds, conޯrm that the user has a valid
purchase record and that any numeric values fall within expected bounds.
Restrict identiޯer mutability
Do not allow clients to alter system-managed properties without passing
role-based access controls or workްow approvals.
Log and monitor unauthorised ޯeld access attempts
Record any requests that include removed or forbidden ޯelds and alert on
patterns of abuse or enumeration.
Include mass-assignment tests in CI
Automate tests that attempt to set protected properties and conޯrm that
the API rejects them, ensuring future changes cannot reintroduce the ްaw.

Related Standards
OWASP API Top 10: API3 Broken Object Property Level Authorisation
ISO 27001: A.5.16 - Access rights
ISO 27001: A.8.26 - Application security requirements
SOC 2: CC6.1 - Logical access control
SOC 2: CC6.3 - Unauthorised access prevention

Additional information
https://cwe.mitre.org/data/deޯnitions/213.html
https://cheatsheetseries.owasp.org/cheatsheets/
Mass_Assignment_Cheat_Sheet.html

•

•

•

•

•

•
•
•
•
•

•
•

crAPI
Søren Johanson

Heiligengeiststraße 6-8
26121 Oldenburg (Oldb)

Germany

16 / 17

https://cwe.mitre.org/data/definitions/213.html
https://cheatsheetseries.owasp.org/cheatsheets/Mass_Assignment_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Mass_Assignment_Cheat_Sheet.html

List of changes
Version Date Description Author

1 2025-05-11 Initial version Søren Johanson

2 2025-05-13 Added ISO 27001, SOC 2
references Søren Johanson

Disclaimer
This report was prepared based on a limited, black-box review of publicly
accessible API endpoints at the time of testing. No access was provided to
source code, infrastructure, or internal documentation. While reasonable eޮort
has been made to identify common API security issues, this audit does not
guarantee the absence of vulnerabilities.

Findings in this report are based on observable behaviour and available data
during the assessment period. New vulnerabilities may emerge over time as
the application evolves or as external threat landscapes change.

This report reްects the application state as of the report date written above.
Findings and recommendations may no longer apply if the application has
changed since this assessment.

This report is intended solely for use by the client named in the engagement
and may not be redistributed, published, or relied upon by third parties without
written consent. The recommendations are advisory in nature, and
implementation decisions remain the responsibility of the client.

Imprint
Søren Johanson
Heiligengeiststraße 6-8
26121 Oldenburg (Oldb)
Germany

crAPI
Søren Johanson

Heiligengeiststraße 6-8
26121 Oldenburg (Oldb)

Germany

17 / 17

	crAPI
	Table of contents
	Executive summary
	Methodology and scope
	Methodology
	1. Scope of assessment
	2. Techniques used
	3. Limitations

	Vulnerability overview
	API2:2023 Weak or missing access controls
	Executive highlights
	Technical description
	Recommendations
	Related Standards
	Additional information

	API4:2023 Unrestricted resource consumption
	Executive highlights
	Technical description
	Recommendations
	Related Standards
	Additional information

	API1:2023 Unauthorised access to other users’ data
	Executive highlights
	Technical description
	Recommendations
	Related Standards
	Additional information

	API3:2023 Overly broad data returns
	Executive highlights
	Technical description
	Recommendations
	Related Standards
	Additional information

	API3:2023 Unauthorised data modifications
	Executive highlights
	Technical description
	Recommendations
	Related Standards
	Additional information

	List of changes
	Disclaimer
	Imprint

